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Abstract

A new procedure to estimate thermal diffusivity has been developed by using a solution explicitly obtained from an
inverse problem of one-dimensional unsteady heat conduction. This method has merit being independent of surface
condition and is simpler than the existing methods, which commonly use a direct heat conduction solution and are
strongly subject to a boundary condition. The thermal diffusivity can be estimated by using a change in the tem-
peratures, which includes some errors at two different points as uncertainty in the measurement. The value estimated
thereby is found to be in good agreement with that of the tested materials, while thermal conductivity needs a reference
to give a known heat to the tested material. This method makes the simultaneous measurement of both thermal dif-
fusivity and thermal conductivity possible by using a reference material. © 2001 Elsevier Science Ltd. All rights

reserved.

1. Introduction

A problem to estimate a thermal property from a
temperature change measured in a solid is considered as
one of the inverse problem. However, most of the
methods to measure thermal properties such as thermal
diffusivity, heat capacity and thermal diffusivity usually
employ a direct solution for one-dimensional transient
heat conduction and determine the thermal properties as
to fit the measured temperature change to the corre-
sponding direct solution. As for the usage of the direct
solution, so far, several methods [1-3] have been devel-
oped for different heating procedures such as (1) pul-
sating heating [4-6], (2) stepwise heating [6], (3) periodic
heating [7] and (4) continuous heating [8]. The accuracy
of the values estimated thereby is strongly influenced by
a difference between actual and conceptual boundary
conditions and by measured accuracy due to the appli-

* Corresponding author. Tel.: +81-952-28-8608; fax:+81-952-
28-8587.
E-mail address: monde@me.saga-u.ac.jp (M. Monde).

cation of the corresponding direct solution for the con-
ceptual condition. Therefore, a special technique may be
needed to sustain a boundary condition and in the
measurement of the temperature.

Apart from these methods, a different procedure be-
ing independent of boundary condition was proposed by
lida and Shigeta [9,10], in which instead of using the
direct solution, the thermal properties are determined by
using subsidiary solution obtained by Laplace trans-
formation. This is called arbitrary heating method,
which is independent of the heating method.

On the other hand, Alifanov [11] briefly described a
method to estimate the thermal properties using an in-
verse solution. Provided that the inverse solution can
predict the boundary condition with a satisfactory ac-
curacy, the value of the properties estimated thereby
becomes free from the boundary condition and then
would be measured easier than that using the direct
solution.

Recently, Monde [12] has derived an explicit solution
for the inverse problem for one-dimensional transient
heat conduction using Laplace transformation and
shows that the solution can predict the corresponding
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Nomenclature

a thermal diffusivity

Apre estimated value of thermal diffusivity

Qirue actual value of thermal diffusivity

fi() function of non-dimensional
temperature at a point of x;

k rate of temperature rise

L characteristic length

min(7/7;) minimum of significant number or
division of measuring equipment

N degree of approximate polynomial

q heat flux

s Laplace operator (= ap?)

T temperature

T; initial temperature

Ti temperature at the point of x| at the time
of t/n, =1

t time

t non-dimensional time lag (erfc(x;/

2+/aff) = min(7T/T;)) at a position of x;
x-coordinate

normal random value of [-1,1]

thermal conductivity

non-dimensional heat flux

subsidiary value of 0

subsidiary value of @

non-dimensional distance

(=x/L, & < &)

non-dimensional time (= at/L?)
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surface temperature and heat flux well and then is also
robust for a disturbance included in the measured val-
ues. The estimated surface temperature and heat flux can
be predicted with the same level as the measured tem-
perature.

A new method is proposed to estimate the thermal
diffusivity using the inverse solution and its applicability
will be verified by the thermal diffusivity. This method
has merit in that these values can be obtained indepen-
dent of surface condition. This method is shown to be
easily extended to the simultaneous measurement of
thermal diffusivity and thermal conductivity using a
reference material to give a known heat transfer to the
tested material.

2. Inverse solution of one-dimensional heat conduction

Monde [12] has already given the inverse solution for
one-dimensional heat conduction equation with con-
stant properties in detail. Therefore, the inverse solution
needed only to estimate thermal properties using a semi-
infinite body is briefly described here, since the solution
for the semi-infinite body becomes simpler than that for
a finite body and is well within a measured time, which
will be discussed later.

One-dimensional heat conduction equation with

constant thermal property can be written as
or T
= (1)

o e

A subsidiary form after Laplace transformation can be
expressed for an initial condition of 7 = 0 as

—— —pT=0. (2)

Let us set the initial condition 7' = 0 for a constant initial
temperature so that it does not lose any generality.

The general solution of Eq. (2) can be easily derived
as

T(x,s) = Ae™ + Be™, (3)

where p?> = s/a, s the Laplace’s operator and 4 and B
are integral constants subject to a surface condition.

In order to determine the constants 4 and B, one
needs the two temperatures measured at two different
points (x =xy,x2, x, > x; > 0) in a finite body. How-
ever, if a measurement of the temperature would be
completed within the time given by erfc(x,/2v/at) =
min(7/7Tp), then the part in the body being larger than
the length of x, does not experience any heat and tem-
perature change and then this body can be considered as
the semi-infinite one. For this case, only one constant B
should be determined from the temperature only at the
one point, since the constant 4 immediately becomes 0.
Let the temperature change at the point of x = x; be
T(x,t) = Tof1(¢). In addition, the temperature change
can be approximated as

0= =" @

k=0

where in Eq. (4) coefficients b, can be determined, for
example, by using the least-mean square method from
the measured temperature, * is a time lag, which it takes
for a temperature to be monitored at the measuring
point and N gives a degree of half polynomial series of
time. This time lag can be determined as
erfc(x; /2v/at*) = min(T/Ty).

After transforming Eq.(4) in subsidiary form, one
may substitute it into Eq. (3) giving the constant B and
then the temperature in the body reaches as

T(x,s)
T

N
— e—p(x—xl)ef_w* Zbk/s(k/2+l)_ (5)
k=0
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The surface temperature becomes in subsidiary form as
follows:

7(0,s) e
AT epxle St b S(k/2+1). 6
T ; % (6)

Consequently, the surface temperature can be obtained
by executing Laplace’s inverse transformation

TWTEt) _ EN:Ej(t B t*),iﬂ/r(%.‘_ 1), (7)

=

where

Nk
E_ | = Zbkek+17
k=0
Nk
E;=) bijer,  j20, Ne=N-j,
k=0

k
e = M, n=1,2.
k!

The details of how to derive these constants are depicted
in [12]. In addition, it is mentioned in [12] that the in-
verse solution can predict the surface condition with the
same accuracy as in measuring the temperatures in the
body when the first derivative of fi(¢) with respect to
time becomes continuous except for ¢ = 0.

3. Estimation of thermal diffusivity

For the case of constant thermal diffusivity, the sur-
face temperature estimated from Eq. (7) using the tem-
perature measured at another point x,, theoretically
becomes the same as that estimated from the measured
temperature at the point x;. Therefore, the thermal dif-
fusivity can be determined such that two surface tem-
peratures of 7,,; and Ty, estimated from the points of x,
and x, become equal over a measured time. That is, the
thermal diffusivity can be determined as to satisfy the
following equation:

Fla) = / Y (Tar(ta) = Tar(t,0)dt — 0, (8)

where ¢ is a time larger than the minimum predictive
time after which the surface temperature can be pre-
dicted with an accuracy of 99% compared with the
corresponding exact one. It is understood that ¢ is
usually determined by at; /L? = 0.01 [12]. As for the time
of t,, it should be shorter than # determined for the
tested body to satisfy the semi-infinite body, that is,
erfc(L/2+/af) = min(T/Ty). This means # <#. Inci-
dentally, the thermal diffusivity is unknown, yet.
Therefore, an approximate value should be first assumed
to estimate the times of ¢ and #. . The actual value is
finally given by iteration as to satisfy Eq. (8).

3.1. Approximate equation and measuring temperature

As for the order of N in Eq. (4), N =5 is employed
here, since it is mentioned in [12] that N = 5-7 was
proved enough for the surface temperature to be pre-
dicted by Eq. (7).

The present method is first checked by using the ar-
tificial data consisting of the exact values calculated
from a direct solution and a value of uncertain
measurements. When one measures a temperature using
thermocouple, the level, Ny of a significant digit for the
temperature obtained may be two or three. Therefore,
the uncertain measurements can be evaluated by the
following two methods:

1. To cut off values calculated from an exact solution at

a certain significant digit, namely

T, ) _ Int( Toue¥n 1) e + 0.5) /ION“,
Ty Ty

n=1,2 9)

2. To superimpose a normal random value ranging
from —1 to 1 and having a standard deviation, o = 1

T(xm T) _ Texact(xnyt) _ _
T~ T +0.005¢(m = 0,0 = 1),
n=1,.2. (10)

Eq. (10) shows the case of Ny = 2 as an example.

It is found in [12] that for the same significant
digit, the values estimated by using Eq. (10) gave the
worse predicted result than those by using Eq. (9).
Here, Eq. (10) is employed to evaluate each coefficient
of Eq. (4).

Substituting the surface temperatures estimated from
the temperatures measured at two different points into
Eq. (8), one executes integration, resulting in a function
of thermal diffusivity only, namely F(a). The value of a,
which we have called as thermal diffusivity, can be de-
termined such that the value of F(a) becomes a mini-
mum value, that is, dF(a)/da = 0. Incidentally, it may
be worth discussing the characteristics of dF(a)/da. The
function of dF(a)/da becomes a very complicated form
including many terms, for example, 28 terms for N =5,
related to the different forms of a, but the function of
dF(a)/da is found to show a monotonic increase from
—o0 to oo with increasing the value of a for a > 0.
Therefore, it is very easy to numerically search the root
of dF(a)/da = 0 within the range of a > 0.

It may be worth mentioning, finally that in the
process of determining the thermal diffusivity, this
method is totally independent of the surface condition,
that gives an essential advantage compared with those
using direct solution which may be strongly influenced
by a difference between the assumed and actual surface
conditions.
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3.2. Concrete procedure to determine thermal diffusivity

The thermal diffusivity can be determined by the
following steps:

1. The times of #; and #_ in Eq. (8) are estimated by first
assuming appropriate thermal diffusivity.

2. The time lags of ¢ and £ at two measuring points of
x1 and x, are also estimated.

3. The temperatures at the points of x; and x, are given
by Eq. (10).

4. The coefficients, by, in Eq. (4) are determined as to
approximate the corresponding temperature.

5. The coefficients, E;, in Eq. (7) are also calculated.

6. The thermal diffusivity is given by searching the root
of dF(a)/da = 0.

7. The iterative procedure will continue until the differ-
ence between the first assumed and the finally ob-
tained thermal diffusivities becomes smaller than a
prescribed value, usually being accurate within three
significant digits.

As for the value of 4, it is basically enough for #, to

satisfy #, < #1, and how the value of #, influences the

accuracy of the prediction, will be discussed later.

4. Result and discussions

It is found from [12] that the inverse solution gives a
better prediction for the surface condition in the case
where the surface condition smoothly changes with time
for ¢ > 0.

Here, as an example case three different surface
conditions will be dealt with for the initial temperature
of T=0.

1. The surface temperature is kept constant, namely
TW/TO = 1

2. The surface temperature is proportionally increased
with time, namely 7, /T, = kt.

3. The surface heat flux is kept a constant, namely
gw/qo = 1 (the surface temperature is given in a text-
book, for example, see [13]).

One can estimate the thermal diffusivity using Eq. (10),

where the exact solution for the surface condition is

inserted and then by following the concrete procedure.

Fig. 1 shows a variation of dF(a)/da when a copper
surface is subject to a boundary condition, case (3). It
also shows the actual value of thermal diffusivity, ae,
for copper being ap, = 1.18 x 107* m?/s.

It is found from Fig. 1 that the root of dF(a)/da =0
has only one value for a > 0. The value of this root just
corresponds to the estimated value of a.

4.1. Measuring time and sampling number

The measuring time required to collect the tempera-
ture data is available within the time of #, namely

50: i J 7
g5 00 e —
=~ _F atrue X =>mm
& 0F ]
= E b

E N, =40 ]
©25¢ £t =08

-50¢t ¥ | . ! . ! ]

1 1.2 14 1.6 1.8 2

a[x10 - mz/sec]

Fig. 1. Value of dF(a)/da vs a (case(3)).

t, < t.. However, from an engineering point of view, a
suitable measuring time should be given to avoid an
unnecessarily long measuring time.

If an expected accuracy in the measurement was to
become two significant digits, then min(7/T;) =
erfc(L/2+/afL) = 0.01 for which the maximum measur-
ing time can be given by L/2\/afy = 1.86. The value of
./t becomes # /t; = 7.23, that is, the measuring time
becomes about seven times shorter than that of ¢.

Fig. 2 shows an effect of the measuring time and the
sampling number of the data on accuracy in estimating
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Fig. 2. Effect of sampling number on accuracy of estimated
values (/1. 0:0.27, @: 0.40, A: 0.53, A: 0.66,: 0.80, H: 0.93,
V: 1.0). (a) step increase in temperature (case(l)); (b) linear
increase in temperature (case(2)); (c) step increase in heat flux
(case(3)).
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the value of thermal diffusivity for three different cases
of (1)—(3). The temperatures used for the estimation are
obtained, for example, at the positions of x; =2 mm
and x, = 5 mm. It is worth mentioning that the same
result in any material can be expected since the inverse
solution is given in a non-dimensional form. Therefore,
as an example, the predicted results for copper are
shown in Fig. 2. Figs. 2(b) and (c) show that for the
cases (2) and (3) the surface temperature gradually
rises, the estimated values fall down within a similar
accurate range of +2-3% for the same value of %/
being independent of the sampling number and then
the estimated values become worse with a decrease in
the measuring time, #. On the other hand, Fig. 2(a)
shows that in case (1) the surface temperature suddenly
rises, the estimated value gradually becomes worse with
an increase in the sampling number for shorter mea-
suring time. For the measuring time of
0.66< £/t < 1.0, however, the estimated value con-
verges within a certain accurate range of +2-3% for the
present sampling number of N; =20-100, while for
t/t. <0.53, the estimated value does not converge with
an increase in the sampling number. This result may be
due to an increase in a relative error, since the absolute
error of 0.005¢ is added to the exact value of 7/T, as
the uncertain measurement. Under such conditions, the
increase in the sampling number makes the relative
error amplify compared with an exact value. In the
cases (2) and (3), the estimated value also becomes
worse compared to that of the desired result with de-
creasing 6/, although it does not diverge in
tr/tp <0.53. This is also due to the same reason. The
reason that the estimated value does not diverge is due
to the continuity of the first derivative with respect to
time by which the inverse solution was guaranteed to
give at high accuracy. It is found from Fig. 2 that for
the measuring time of 0.8<#/f <1.0, the thermal
diffusivity can be obtained at high accuracy at the
sampling number of 20.

Incidentally, in order to calculate the maximum
measuring time, #;, one needs the value of the thermal
diffusivity, which is unknown yet. After two or three
trials of the measurement, however, an approximate
value could be easily found.

Finally, the values predicted by this method gather
around the true value and tend to deviate either larger
than or smaller than the true value. Such characteristics
come from the degree of approximate polynomial
equation.

4.2. Effect of measuring points

Fig. 3 shows an effect of the distances of the
measuring point, x,, on accuracy of the estimated value
under the condition of #,/#, = 0.8, Ny, = 40, x; = 2 mm.
The point of x; = 2 mm is selected as a point closer to
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Fig. 3. Effect of position of measurement on accuracy of pre-
dicted values.

the surface for two reasons. It is a realistic matter in an
actual measurement and to obtain accuracy of the in-
verse solution, which is guaranteed by choosing the
measuring point as close to the surface as possible. Fig.
3 shows that the accuracy of the estimated value
gradually deteriorates as another measuring point, x,,
goes away from the surface. This result is mainly due
to the characteristics of the inverse solution that its
accuracy deteriorates with increasing the distance from
the surface to the measuring point. Fig. 3 finally rec-
ommends us to choose the distance of x, to be less than
10 mm for any case, but not to be less than about 3
mm in actual measurement to avoid an influence of
inserted thermocouple on heat flow in the solid. It may
be not necessary to say that from a mathematical point
of view, it is better for the point x, to be closer to the
point xj.

Fig. 4 shows the values estimated for several solid
materials by applying this method for the case (3). The
value of thermal diffusivity can be estimated within an
accuracy of 2-3% in the simulation as shown in Fig 4.
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Fig. 4. Comparison of estimated and actual values (case(3):
tz/t]_ = 087 NS = 40)
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4.3. Instruction and recommendation to actual measure-
ment

In an actual measurement, the two times needed to
evaluate Eq. (8) are recommended: for the time of 7, the
time is given by at;/L*> =0.01 and for the time of
ty, 0.8< 1/t <1.0 and # is given by erfc(L/2\/afy) =
min(7/7Tp). The measuring point of x, is recommended
so as to satisfy x,/L < 0.2 for the plate [12].

5. Experiment of measurement and validation

The procedure to numerically estimate thermal dif-
fusivity using the inverse solution was explained in the
previous sections. In this section, one will discuss the
availability of the proposed method by actual measured
temperatures at two different points and comparing the
estimated thermal diffusivity with a measured one.

5.1. Experimental apparatus

Fig. 5 shows a schematic of an experimental ap-
paratus and dimensions of the test material. A com-
mercial handy plug air jet heater is used as a heat source
to heat the test material of 100 mm in length. Two
thermocouples are embodied into two different positions
of 2 and 5 mm from the surface to measure their tem-
peratures. The actual positions of the thermocouples are
directly measured by removing the area between the two
thermocouples. Minimum division of the temperature
measuring equipment used is 0.06 K for copper and
brass, while it is 0.12 K for stainless steel. The frequency
response of the equipment is 20 Hz and then the shortest
sampling time becomes 0.05 s.

5.2. Temperature change at the measuring point

Fig. 6 shows the temperature changes for copper and
stainless steel plotted against non-dimensional time, #/#,

akelite
Test piece
Hot air
Heater Heat insulator
hermocouples
CPU AD G

Fig. 5. Schematic of experimental set-up.
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Fig. 6. Temperature change at two points of x; =2 and
x, = 5 mm for copper, brass and stainless steel.

(tL = 6.44 s for copper and #, = 140 s for stainless steel).
It also shows that the temperature for stainless steel rises
largely during the measurement, while the rise in the
temperature for copper is relatively smaller than that of
stainless steel. The rises in the temperature are
T, — T, =180 K and 7} — T; = 6 K for stainless steel
and copper, respectively. During the temperature
measurement, the temperature increase for copper be-
comes about 30 times smaller than stainless steel. This
difference largely influences the accuracy of the mea-
surement result when the temperature is measured by
equipment with the same minimum division.

5.3. Procedure to determine the initial time

In the numerical case, the initial time is automatically
given due to the usage of direct solution. In the actual
measurement, however, the initial time is hardly given
because it takes time for the thermocouple to sense the
temperature change beyond its minimum sensitivity.
Therefore, the initial time is defined in the following way
as shown in Fig. 7:

1. The time lag, * at the point of x; can be calculated
from the relation of min{(7—7;)/(TL. —T;)} =
erfc(x;/2v/at*) = 0.01 and then the temperature,
T*(x1,¢*) is also given.

2. The point, 4, can be plotted as a point of (¢, 7*) on
the +~T graph.

3. The temperature, T}, first detected by the equipment
can be also marked as point, B, on the /T graph.

&5 =1
= 1G]
Tl-Ti. B 0.01 A
gL‘OII‘ A T Ti B
) Ti-Ti
t t
(@ 0 LIRS (b) 0 Loty

Fig. 7. Procedure to estimate the initial time.
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4. As shown in Fig 7, there are two cases (a) or (b) de-
pending on whether 7 is smaller than 7} or not.

5. The point at which the straight line connecting the
points A and B intersects the initial temperature of
T = T; can be determined as the initial time of the
measurement.

It may be of importance to say that the difference be-

tween the cases (a) and (b) causes little influence on the

measured result, although the initial time for case (b)

may be more accurate than that of the case (a). After

arriving at the initial time, one can calculate the thermal

diffusivity by following the explanation in Section 3.2.

5.4. Discussion of measurement result

Fig. 8 shows the values of thermal diffusivity calcu-
lated from the temperature change measured for copper,
brass and stainless steel. A value of Ax; and Ax, in Fig. 8
shows uncertainty in units of mm at the points of x; and
x,, respectively. It is found from Fig. 8 that for both
brass and stainless steel, both values of the thermal
diffusivity calculated from the measured values agree
with the exact ones and then the level of accuracy is
similar to that in the measurement of the temperature.
On the other hand, for copper, the error in the estima-
tion becomes relatively larger than that for brass and
stainless steel. This results from the error in the tem-
perature measurement. The minimum setting on the
measuring equipment corresponds to 0.06 K, while the
ratio of the error contained in the measured temperature
to the maximum temperature rise becomes {0.06/(7.—
T;)}=0.01 for copper compared with {0.06/(7. — T;)} =
0.002 for brass and 0.0005 for stainless steel. In other
words, the temperature has been measured in a range
slightly larger than the minimum division of the mea-
suring equipment, resulting into a large uncertainty in-
cluded in the measured values. If the amount of heat is

1.5 T T T | ""[ T T T l'll[ T T T
i Ax, Ax, v 1
141 o 0 0 -
Lo 0 01 o Cu ]
L1322 0 +01 i
E Y -0.1 0 < ]
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S12F & 1 +01 0 |
= L ]
1.1k SUS Bs i
ol ivi +5%
1.0 Q
e < 5%
0'9 < " L lIlAAll-S " L :lx.nl_4 " P
10 10 Atrue [mz/sllO 5

Fig. 8. Accuracy of estimated value and effect of position of
measurement on its accuracy.

increased for the copper to cause a large rise in the
temperature, the calculated value would be improved
the same as those for brass and stainless steel. Another
way is to employ more accurate equipment which can
follow a small temperature change with the corre-
sponding accuracy. Therefore, this matter would be
cleared by an improvement of heating or measuring
equipment.

5.5. Effect of uncertainty included in measuring point on
estimated thermal diffusivity

When uncertainties of Ax; and Ax, = 0.1 mm are
separately added to the true distances of x; and x,, re-
spectively, the influence of these uncertainties on the
estimated values is shown in Fig. 8. It is found from Fig. 8
that the uncertainties of +0.1 mm overlapped in posi-
tion, xj, corresponding to a relative error of 5%, make
the estimated value deteriorate by about 5%. There-
fore, it may be necessary to give the positions x; and x,
the similar accuracy as the temperature measurement.

5.6. Comparison of the present and existing results

The value of thermal diffusivity can be estimated for
brass and stainless steel by the present method as shown
in Fig. 8. The same predictive accuracy of about 5%
obtained by the experiment can be obtained by the
simulation in the previous section. In addition, this ac-
curacy is found to compare to one obtained in the ex-
isting procedures, although the present procedure is
much simpler than any existing one.

5.7. Merit and caution in the present method

The present method can be applied within the time of
t, since the inverse solution is employed with the semi-
infinite body. The present method has much merit to be
totally independent of surface conditions which strongly
influence the accuracy of the value estimated by the
methods using a direct solution and also to be simpler
than the other methods using a direct solution. The
number of sampling points is from 30 to 50 well within a
measuring time. It may be of importance to clarify that
the rise in the temperature measured becomes rapidly
larger than the minimum temperature setting of the
measuring equipment within a measured time. An im-
provement of predictive accuracy would be attained up
to a level of three significant digits by increasing the
order of approximate equation from N = 7-9, although
the terms of different order of @ in dF(a)/da are rapidly
increased with increasing N and its functional form be-
comes complicated. An increase in the order of N in Eq.
(4) does not improve the accuracy, since the inverse
solution itself cannot be improved by increasing the
order more than that of N = 10.
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Finally, it should be mentioned that in this method,
relative temperatures at two points are important in
place of absolute ones.

6. Comparison of arbitrary heating method with present
method

Although most of the existing methods employed the
direct solution, Iida and Shigeta [9,10] developed a dif-
ferent one that is similar to the present one from the
viewpoint that both methods do not need a direct
solution and are free from a surface condition and em-
ploy Laplace transformation. Both employ the same
subsidiary Eq. (3). In Eq. (3), lida and Shigeta [9,10]
directly and numerically estimated the thermal diffusiv-
ity using the solution in a subsidiary form, which was
much different from the present one. In their calculation,
the ranges of the maximum measuring time and the
value of Laplace operator, s, are experimentally given as
8 Cstmax <12, resulting in a good estimation. The
reason that these ranges are enough to predict a good
estimate cannot be explained well yet. Therefore, the
effect of the value of f,,x on the estimated value may be
difficult to be predicted, in comparison with the present
one in which the maximum time can be exactly given.

7. Estimation of thermal conductivity

Provided that the density for a solid is known, either
its thermal conductivity or its heat capacity can be
properly estimated, since the thermal diffusivity is al-
ready known. However, both properties cannot be esti-
mated from the measurement of the temperature only as
shown in Fig. 5, because their dimension includes a unit
of heat. In order to estimate one of them, one has to
measure one of the two values of heat transferred into
the solid and temperature distribution or gradient in the
solid beside the temperature change at a given point.

According to the inverse solution, the surface heat
flux for the semi-infinite solid is given by the following
equation and its accuracy in predicting the surface heat
flux corresponds to that in the temperature measure-
ment:

<Dw(r)ZXN:G}(‘E—'ET)HZ/F(%-FI), (1)

==

where the details of the coefficients are given in [12].

If the surface heat flux would be measured with the
same accuracy as the temperature measurement, the
thermal conductivity can be determined from Eq. (11)
by using the temperature change given by Eq. (4) as

A Jia(de
T Tt N /2 ) (12)
va [P G- 6Y?/T(j/2 4+ 1) de

where
Nk
G,1:Zbk€k, j:—l, Nk:N,
k=0
Nk
Gj:Zbk+j+lek7 ./207 Nk:N—j
k=0

For the case of a constant heat flux, Eq. (12) can be
simplified as

A go( — 1)
Va S Gl = 1) — (o =) /(TG 2 +2)
(13)

In the case where the heat flux is still a function of time,
one has to use a finite solid as a reference, for which
physical properties needed are well known, and to esti-
mate the heat flux from the temperature change in the
finite referred solid. Substituting the estimated heat flux
into Eq. (12), one can estimate the thermal conductivity.
As the result, the finite referred solid makes a simul-
taneous measurement of thermal diffusivity and thermal
conductivity possible.

Although the simultaneous measurement is not made
in the present experimental system, a numerical estimate
is still possible. We estimate the thermal diffusivity
using the temperature change in a solid, as an example,
for the constant heat flux indicated by the case (3).
For copper, the estimated value of / is found to become
2 =3867W/mK for an actual value of 1=
386 W/m K. It is numerically verified that the value of
the estimated thermal conductivity also agrees with the
actual value for any solid within an accuracy of uncer-
tainty in the measurement, since Eq.(12) is derived from
the inverse solution in non-dimensional form.

8. Conclusions

A new method to measure the thermal diffusivity is
proposed using the inverse solution for one-dimensional
heat conduction and the following results are obtained.
1. The validity of the method proposed for thermal dif-

fusivity is numerically and experimentally verified

and then a simultaneous measurement of the thermal
diffusivity and thermal conductivity is numerically
verified.

2. The thermal diffusivity can be estimated within an ac-
curacy of 2-3% using temperature changes measured

at two different positions with an accuracy of 1%.

3. The level of accuracy of the estimated value almost
corresponds to that of the inverse solution.

4. The present method has merit in that it is indepen-
dent of surface condition and simpler than the exist-
ing ones.
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5. The sampling number needed in the estimation can be
determined.
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